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Abstract

The forward-backward asymmetry for the process e+e− → µ+µ− is investigated
by simulating a particle collider and a detector running in the centre-of-mass en-
ergy range 20 − 140 GeV . The asymmetry ratio is extracted from a curve fit to
the angular distribution of detected muon pairs for different energies and detec-
tor resolutions. Then, the “r” and “j” parameters of the scattering matrix are
obtained from a fit to the simulated data of asymmetry ratio with corresponding
centre-of-mass energies. The computational results of these parameters show a
good agreement with the values obtained from CERN in 1997.



Introduction

When an electron and a positron are collided at high energies, they annihilate to
form a quantum superposition of a Z boson and a photon [1]. The composition
of this superposition depends on the centre-of-mass energy of the collision. Sub-
sequently, the quantum superposition decays into a pair of muons provided with
enough energy [1]. The Feyman diagram for this process is shown in Fig. 1. A1,
in which horizontal axis represents time and vertical axis represents space.

Figure 1: A. Feynman Diagram, B. Schematic Diagram of e+e− → µ+µ−

Theoretical Formalism

Assuming the electron and positron are moving from opposite directions with the
same amount of energy, i.e., in the centre-of-mass frame of the system [1], then the
only particles produced, i.e., two muons, must come out back to back such that
the momentum of the system is conserved. Shown in Fig. 1. B, angle θ is defined
to be the angle between the positron direction and negative muon direction.

While photons produce muons symmetrically in angle θ, Z bosons do not [1]. How-
ever, it is the quantum superposition of a photon and a Z boson that decays into
a pair of muons, and therefore does not necessarily produce muon pairs symmet-
rically in θ. The asymmetry ratio depends on the composition of the quantum
superposition, which is effectively determined by the centre-of-mass energy.

For a specific collider running in a day, the angular distribution of produced muon
pairs in cos θ is given by

dNµ

d cos θ
= κ[σS(

√
s)(1 + cos2 θ) + σA(

√
s) cos θ], (1)

1Fig. 1 is adapted from Computing Project B: Investigating asymmetry in particle colli-
sions [1].
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where Nµ is the total number of muon pairs,
√
s is the centre-of-mass energy2 and

κ is a constant of the collider with unit3 GeV 2. The σS and σA are defined as

σS(
√
s) =

4

3
π

[
1

s
+

srS + (s−M2
Z)jS

(s−M2
Z)2 +M2

ZΓ2
Z

]
, (2)

and

σA(
√
s) = π

[
srA + (s−M2

Z)jA
(s−M2

Z)2 +M2
ZΓ2

Z

]
, (3)

with unit GeV −2, where MZ and ΓZ are the mass and decay width of Z bosons4 [1].

The “r” parameters describe the peaks of σS and σA where the centre-of-mass
energy is around MZ . The “j” parameters describe the overall energy dependence
of σS and σA

5. The six parameters, MZ , ΓZ , rS, rA, jS, jA, can be used to construct
a S-matrix that describes this entire scattering process [3].

The forward-backward asymmetry ratio is defined to be σA
σS

[1] as a function of
centre-of-mass energy. It is directly related to the ratio of numbers of muon pairs
distributed in cos θ ≥ 0 (forward sphere) and cos θ < 0 (backward sphere). The
numbers of muon pairs in the forward sphere and backward sphere can be respec-
tively written as

N f
µ =

∫ 1

0

dNµ

d cos θ
d cos θ =

4

3
σS +

1

2
σA, (4)

and

N b
µ =

∫ 0

−1

dNµ

d cos θ
d cos θ =

4

3
σS −

1

2
σA. (5)

By applying Taylor expansion at the origin and assuming 3
8
σA
σS
� 1, their ratio

turns out to be

N f
µ

N b
µ

=
1 + 3

8
σA
σS

1− 3
8
σA
σS

≈ 1 +
3

4

σA
σS
, (6)

where σA
σS

can be identified to be the asymmetry ratio defined above.

2
√
s is adopted to simplify the notation of square of energy used massively in relevant equa-

tions.
3Natural units are adopted, i.e., c = h̄ = 1.
4MZ = 91.2 GeV, ΓZ = 2.5 GeV [1].
5See Appendix A for more about S-matrix parameters.
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Computational Methods

The experiments were simulated using Python 2.7 programming language with
SciPy computing environment6.

Figure 2: Schematic Diagram of Detector Elements

A collider was built with Eq. 1, where κ = 1.0× 106 GeV 2, σS and σA defined as
functions of centre-of-mass energy via Eq. 2 and 3. The collider was designed to
operate at energies between 20 GeV and 140 GeV . Then, a detector was installed
around the collision point, spanning a range of angles for cos θ ∈ [−0.95, 0.95], left
with two holes at the ends to enable electron and positron beams to enter. Shown
in Fig. 2, the detector comprised a number of detector elements equally spaced in
cos θ, with an angular resolution effectively equal to the width of the cos θ bins.

The expected number of muon pairs detected by a single detector element is obvi-
ously the fraction of those produced by the collider and distributed in the range of
that detector element. Thus, the expected number N i

e for an element positioned
at i, was calculated by integrating Eq. 1 with respect to cos θ over the bin width,
which is given by

N i
e =

∫ i+w/2

i−w/2

dNµ

d cos θ
d cos θ = κ[σS(cos θ +

1

3
cos3 θ) +

1

2
σA cos2 θ]|i+w/2

i−w/2, (7)

where i is the central position of the detector element and w is the bin width.

However, the detector was actually counting the number of muon pairs, which
introduced the random nature of a counting experiment. Hence, the expected
number N i

e was randomised by a Poisson distribution with N i
e as the mean value.

The effect of random noise, i.e., fake muon pairs detected, was also considered.
For this specific detector, it was simulated by randomising 3 with another Poisson
distribution to yield the number of fake muon pairs detected per day in each
detector element. Then, the two randomised values were summed to give the

6NumPy, SciPy and PyLab libraries were used.
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simulated number of muon pairs detected by a single detector element in a day,
denoted by N i

s. The process was repeated for all detector elements to give the
angular distribution of Ns.

Since the angular distribution of muon pairs was modelled by Eq. 1, in order to
extract the asymmetry ratio, the values of σS and σA were obtained by fitting Eq. 1
into the simulated distribution. To measure the energy dependence of asymmetry
ratio, the process was repeated for energies between 20 GeV and 140 GeV . The
resolution dependence of asymmetry ratio was also investigated for resolutions
between 0.0095 and 0.475 such that the total number of detector elements is even
for the detector to be symmetrical by itself.

The error on a counting experiment is the square root of number of counts [1]. So
the error on N i

s for each detector element was
√
N i
s.

The errors on σS and σA are related to the error on N i
s by the approximation to

differential assuming the errors are small, which is given by

δN i
s =

∂N i
s

∂σS
δσS +

∂N i
s

∂σA
δσA = κ[(1 + cos2 θ)δσS + cos θδσA], (8)

where δN i
s stands for the error on N i

s, δσS and δσS are the errors on σS and σA.
Then, the errors on σS and σA were obtained by fitting Eq. 8 into the data of

√
N i
s

with corresponding cos θ. Subsequently, the error on the asymmetry ratio, σA
σS

, was
derived by combining the percentage errors of σS and σA.

To calculate the “r”, “j” parameters, asymmetry ratio A was written as a function
of
√
s:

A(
√
s) =

σA(
√
s)

σS(
√
s)
, (9)

which is essentially Eq. 3 divided by Eq. 2. The “r”, “j” parameters were derived
by fitting Eq. 9 into the data of asymmetry ratio with corresponding centre-of-mass
energies.

The errors on the “r”, “j” parameters are related to the error on asymmetry ratio
by again the approximation to differential provided the errors are small, which is
given by

δA =
∂A

∂rA
δrA +

∂A

∂rS
δrS +

∂A

∂jA
δjA +

∂A

∂jS
δjS, (10)

where δA is the error on asymmetry ratio, δrA is the error on rA, δrS is the error
on rS and etc. Similar to the method of deriving errors on σS and σA, the errors
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of the “r”, “j” parameters were obtained by fitting Eq. 10 into the data of errors
on asymmetry ratio with corresponding centre-of-mass energies.

The errors originated from curve fit were taken into account for the calculation of
the values of asymmetry ratio and the “r”, “j” parameters, but neglected for the
calculation of errors on them, which would introduce “error on error”.

Results and Discussion

Figure 3: Simulated Angular Distribution of N i
s in cos θ

The angular distribution of simulated number of muon pairs detected in a day
without noise simulation is shown in Fig. 37. A curve was fit to the distribution
to extract the asymmetry ratio for different energies and resolutions.

The energy dependence and resolution dependence of asymmetry ratio were first
studied by running the collider and detector in one day without simulation of
random noise.

Shown in Fig. 4. A, by considering the approximation in Eq. 6, the collider was
producing muon pairs almost symmetrically when energy was lower and at

√
s =

MZ , i.e., the number of muon pairs produced in forward sphere equals number
in the backward when σA

σS
= 0. The magnitude of asymmetry ratio was always

7Fig. 3–7 are modified from the figures generated by matplotlib in SciPy.
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Figure 4: A. Energy Dependence, B. Resolution Dependence of Asymmetry Ratio

less than 1, which indicated that muon pairs produced in forward sphere ranged
from significantly less than in the backward to almost as twice of in the backward.
Moreover, the error on asymmetry ratio diminished around

√
s = MZ . A curve

was fitted to Fig. 4. A to calculate the “r”, “j” parameters.

Asymmetry ratio was plotted against resolutions in Fig. 4. B, and there was no
obvious trend on the resolution dependence of symmetry ratio.

Figure 5: Resolution Dependence of Error on Asymmetry Ratio at 91.2 GeV

To choose an optimal resolution for the detector, the error on asymmetry ratio
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was analysed for different resolutions, shown in Fig. 5. Eventually the detector
was built with resolution = 0.095, which had a total of 20 elements.

Figure 6: Energy Dependence of Asymmetry Ratio Simulated in 15 Days

The completed collider and detector were operated for 15 days with random noise
simulation. The energy dependence of asymmetry ratio was shown in Fig. 6. The
results obtained for the S-matrix parameters from the curve fit shown in red are

rS = 0.13829± 0.00094,

jS = −0.029± 0.025,

rA = 0.00296± 0.00094,

jA = 0.7982± 0.0049.

Conclusion

The experiment was to investigate the asymmetry in particle collisions and cal-
culate the S-matrix parameters for the process e+e− → µ+µ−. The results are
consistent with the experimental values obtained by ALEPH detector in 1997 [2].
The computing methods, error derivations in particular, could be significantly
simplified if the approximation in Eq. 6 was assumed for this simulation project.
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Appendix A: S-matrix Parameterisation

Figure 7: Energy Dependence of A. σS and σA, B. Nµ

The relations between σS, σA and centre-of-mass energy were plotted in Fig. 7. A.
Z mass MZ determines the position of the peaks, and the decay width ΓZ affects
the width of the peaks. While the rS and rA decide the height of the peaks of σS
and σA respectively, the jS and jA describe the overall shapes and levels.

Shown in Fig. 7. B, the total number of muon pairs produced by the collider
only depends on σS because the σA term cancels out when integrating Eq. 1 with
respect to cos θ from −1 to 1. As a consequence, the parameters that affect σS
have the same effects on Nµ.

Appendix B: Programming Scripts
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