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Abstract: The aim of this article is to review some aspects of supersymmetric quantumfield theory
in zero dimension. The basic construction of a generic quantumfield theory is discussed in terms of
its domain manifold and field contents. Then, we introduce the path integral formalism for quan-
tum field theories in zero dimension. With a special choice of the action, the partition fucntion is
shown to have an additional symmetry, called the supersymmetry. For the supersymmetric theory,
we show that the partition function is localised on the loci where the fermionic supersymmetry
transformation vanishes. It is also shown that the superpotential is invariant under deformations.
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1 Introduction

A quantum field theory (QFT) is a mathematical framework developed by physicists based on a
few guiding principles from special relativity and quantum mechanics. Most of the constructions
for a QFT are mathematical conjectures and fewQFTs have been proven to exist with mathematical
rigour. However, one particular QFT, namely the Standard Model, has shown to be a great
success, consistent with experimental results up to an unprecedented level of accuracy. In modern
theoretical physics, it is generally believed that all physics should be based on some QFTs. In this
review, wewill discuss QFTs in zero dimension. Studying this simplisticmodel demonstrates some
of the powerful techniques applicable to higher dimensional cases. This review follows Chapter 9
of Mirror Symmetry [1].

1.1 Construction of Quantum Field Theory

The base structure of a QFT is a metric manifold {M,g} of dimension n. The main objects of
study are called fields, which are to be integrated over the manifoldM in the so-called path integral
formalism. These fields are therefore functions or tensor bundles overM. For example, a quantum
gauge theory considers gauge fields, i.e., principal bundles with connections, and matter field, i.e.,
vector bundles. In this formalism, to study a quantum field theory means to compute all the path
integrals of interest.

We can add more structures into mix. For example, a sigma model considers the maps

X :M 7→ N (1.1)

for some targetmanifoldN. As another example, integrating over choices ofmetric on themanifold
M gives quantum gravity.

In the case where the manifoldM has some boundaries

∂M = ∪iBi . (1.2)

The field configurations onBi, i.e., boundary conditions, form aHilbert spaceHi. The path integral
can be viewed as linear maps

⊕i Hi → C . (1.3)
In addition to the path integral formalism, there is an alternative approach called the operator
formalism, in which we promote fields to operators on the Hilbert space obeying some canonical
quantisation relation.

2 Zero-Dimensional Quantum Field Theory

For a zero-dimensional QFT, the domain manifoldM is simply a point. The operator formalism
does not exist here since a point does not have boundaries.

Let’s consider the simplest field, a real scalar function onM, i.e., X :M→ R. The path integral
formalism starts by defining the partition function

Z :=

∫
dXe−S(X) , (2.1)

where S(X) is a function of X called the action, which specifies the system at the classical level.1
In studying a QFT, we are also interested in computing path integrals of functions of fields with
exp(−S) as the weight, called correlation functions given by

〈f(X)〉 :=
∫
dX f(X)e−S(X) . (2.2)

1In higher dimensions, S[X] is a functional of the function X.
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It is conventional to normalise the correlation functions by a factor of the (free) partition function.
In practice, the computation of correlation functions rely on deforming the action by a “source”
term

δS := −
∑
i

aifi(X) , (2.3)

and taking derivatives with respect to the constants ai.

〈fi(X)〉 =
∂

∂ai

∫
dXe−S−δS

∣∣∣∣
ai=0

. (2.4)

As an example, consider a toy model with action

S(X) =
1

2
αX2 + iεX3 (2.5)

for some constants α and ε. The (normalised) partition function can be written as

Z(α, ε) =

∫
dX

∞∑
n=0

e−
1
2
αX2 (−iεX

3)n

n! . (2.6)

Each term in the sum can be evaluated using the generating function

f(α, J) =

∫
dXe− 12αX2+JX =

( α
2π

)− 1
2

e
J2

2α (2.7)

via ∫
dXXre− 12αX2 =

∂r

∂Jr
f(α, J)

∣∣∣∣
J=0

. (2.8)

This computational device gives rise to the famous “Feynman diagrams”, which we shall not
discuss in details here.

The above construction can also be generalised easily to multi-variable cases using the integral
formula

Z(M) =

∫(∏
k

dXk
)
e−

1
2
XiMijX

j

= det
(
M

2π

)− 1
2

(2.9)

whereM is a positive-definite and invertible matrix.2

2.1 Fermions and Supersymmetry

To describe fermions in the path integral language, we need to introduce Grassmann “variables”
{ψi | i = 1, ...,N}, which form the basis of an exterior algebra.3 Note that these are not variables
in the usual sense. There is a Z2 grading that assigns 0 to bosonic variables and 1 to fermionic
variables. The bosonic and fermionic variables are also said to be Grassmann even and odd
respectively. The commutator is generalised to a graded commutator [·, ·}, defined by

[A,B} = AB− (−1)abBA , (2.10)

where a, b are the gradings of A,B. This reduces to a commutator [·, ·] when either variable
is bosonic, and becomes an anti-commutator {·, ·} when both variables are fermionic. Note that
Grassman variables are nilpotent, i.e.,

ψψ = 0 . (2.11)

2The Einstein summation convention has been used for repeated indices.
3Not to be confused with superspace coordinates.
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To integrate over fermions, we need to define Berezin “integration” by∫
dψ = 0 , (2.12)∫

dψψ = 1 , (2.13)∫
dψ1 · · ·dψNψN · · ·ψ1 = 1 . (2.14)

Note that the sign in Equation 2.14 is a choice of convention.
Now an action describing both bosons and fermions is a function of both X and ψ. Since the

original action S(X) is Grassmann even, to retain the original bosonic piece the new action S(X,ψ)
must also be Grassmann even. Hence there must be an even number of fermionic variables.

Consider an action involving only fermionic variables ψa

S =
1

2
ψaMabψb , (2.15)

The partition function is given by

Z =

∫ ∏
k

dψk e−
1
2
ψaMabψb = Pf(M) , (2.16)

where Pf(M) is the pfaffian of M and Pf(M)2 = det(M). Note that the Berezin gaussian integral
gives a factor of det(M)1/2, while the normal gaussian integral produces det(M)−1/2.

The partition function of a general action S[X,ψ] is given by

Z =

∫ ∏
i

dXi
∏
a

dψa e−S[X,ψ] , (2.17)

where the indices of X and ψ have been depreciated in the arguments of the action.
The simplest non-trivial example involves one bosonic variable and two fermionic variables.

The most general action in this case is given by

S(X,ψ1, ψ2) = S0(X) −ψ1ψ2S1(X). (2.18)

The partition function is

Z =

∫
dXdψ1dψ2 e−S0+ψ1ψ2S1(X) (2.19)

=

∫
dXdψ1dψ2 e−S0(1+ψ1ψ2S1(X)) (2.20)

=

∫
dXdψ1dψ2 e−S0(X) +

∫
dXdψ1dψ2 e−S0(X)ψ1ψ2S1(X) (2.21)

=

∫
dXe−S0S1(X) . (2.22)

For a special choice of S0(X) and S1(X), the theory gains a continuous symmetry, called the
supersymmetry, which mixes bosonic and fermionic variables. In this special choice, the action is

S(X,ψ1, ψ2) :=
1

2
(h ′(X))2 − h ′′(X)ψ1ψ2 , (2.23)
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whereh(X) is a real function ofX, andh ′ denotes its derivativewith respect toX. The (infinitesimal)
supersymmetry transformation is given by

δX = ε1ψ1 + ε
2ψ2 , (2.24)

δψ1 = ε
2h ′(X) , (2.25)

δψ2 = −ε1h ′(X) , (2.26)

where ε1 and ε2 are (infinitesimal) fermionic parameters.
It is easy to show that the change of the action

δS = δX
∂S

∂X
+ δψa

∂S

∂ψa
(2.27)

vanishes under this transformation. However, for the quantum field theory to be invariant, the
integration measure in the path integral is also required to be invariant. To compute the variation
of the integration measure, we need to introduce the concepts of supertrace and superdeterminant.
Consider a linear map

M : V → V , (2.28)

where V = V0 ⊗ V1 is a super vector space. Then the mapM can be written as a matrix

M =

(
A B

C D

)
, (2.29)

where A : V0 → V0 and D : V1 → V1. The supertrace is defined by

strM := trA− trD, . (2.30)

The superdeterminant sdetM can be defined such that

δ(log sdetM) = str(M−1δM) , (2.31)
sdet1 = 1 . (2.32)

The supersymmetry transformation on the super vector space X

ψ1
ψ2

 7→
 X+ δX

ψ1 + δψ1
ψ2 + δψ2

 (2.33)

gives a jacobian
J = sdet(1+ E) , (2.34)

where

E =

 0 ε1 ε2

ε2h ′′ 0 0

−ε1h ′′ 0 0

 . (2.35)

Using the definition of superdeterminant, we have

J = exp log sdet(1+ E) (2.36)
= exp

(
log sdet1+ str(1−1E)

)
(2.37)

= 1 . (2.38)

We have shown that the integration measure is indeed invariant under the supersymmetry trans-
formation. Therefore, we say this theory has supersymmetry.
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2.2 Localisation Principle

One of the striking features of this supersymmetric theory is that the partition function is (almost)
always zero. The idea is to use the supersymmetry transformation to set one of the fermionic
variables in the action to zero, thusmaking the partition function zero using the Berezin integration
rules.

For example, we can choose

ε1 = ε2 = −
ψ1

h ′(X)
(2.39)

to set ψ1 to zero, provided that h ′(X) is non-vanishing for all X. The transformed fields are given
by  X

ψ1
ψ2

→
X− ψ1ψ2

h′(X)

0

ψ2 +ψ1

 . (2.40)

However, this change of variables unfortunately gives a vanishing jacobian, which does not help
in evaluating the original integral. Instead, we consider a new transformation X

ψ1
ψ2

→
 X̂

ψ̂1
ψ̂2

 =

X− ψ1ψ2
h′(X)

α(X)ψ1
ψ2 +ψ1

 , (2.41)

where α(X) is a real function of X. To compute the jacobian, we need to use the formula

sdet(X) = det(A)det
(
D− CA−1B

)−1 (2.42)

for an even super matrix (
A B

C D

)
,

where A,D are even and B,C are odd. The jacobian is then computed to be

J = sdet

1+ψ1ψ2h ′′(X)/(h ′(X))2 −ψ2/h
′(X) ψ1/h

′(X)

α ′(X)ψ1 α(X) 0

0 1 1

 (2.43)

=

(
α(X) −

α ′(X)ψ1ψ2
h ′(X)

)−1(
1+

ψ1ψ2h
′′(X)

(h ′(X))2

)
(2.44)

= α(X̂)−1

(
1+

ψ̂1ψ̂2h
′′(X̂)

α(X̂)h ′′(X̂)

)
. (2.45)

We then apply this change of variables to the integration measure to get

dXdψ1dψ2 =
(
α(X̂) −

ψ̂1ψ̂2h
′′(X̂)

[h ′(X̂)]2

)
dX̂dψ̂1dψ̂2 . (2.46)

The action is invariant under the original transformation with α = 0 in Equation 2.40, thus

S(X,ψ1, ψ2) = S(X̂, 0, ψ̂2) . (2.47)

Combining Equation 2.46 and Equation 2.47 into the partition function gives

Z =

∫
dX̂dψ̂2 e−S(X̂,0,ψ̂2)

∫
dψ̂1 −

∫
dX̂dψ̂1dψ̂2 ψ̂1ψ̂2

h ′′(X̂)

(h ′(X̂))2
e−S(X̂,0,ψ̂2) . (2.48)
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The first term vanishes because
∫
dψ̂1 = 0. The second term vanishes since h ′′/(h ′)2 = −[(h ′)−1] ′

is a total derivative. Hence we conclude that

Z = 0 if h ′(X) 6= 0 ∀ X . (2.49)

Now consider a more general situation where h ′(X) may be zero for some X. The partition
function only gets contributions from the points where h ′(X) = 0, i.e., the critical points of h(X).
We say that this path integral is localised at the loci where the fermions vanish ψi 7→ 0. This is a
generic feature for supersymmetric QFTs, under the name of localisation principle.

We can Taylor expand the superpotential h(X) around its critical points Xc to get

h(X) = h(Xc) +
1

2
A(Xc)(X− Xc)

2 + · · · . (2.50)

Then the localised partition function (normalised to
√
2π) is given by

Z =
1√
2π

∑
Xc

∫
dXdψ1dψ2 e−

1
2
A(Xc)

2(X−Xc)
2+A(Xc)ψ1ψ2 (2.51)

=
∑
Xc

A(Xc)

|A(Xc)|
(2.52)

=
∑

{Xc|h′(Xc)=0}

h ′′(Xc)

|h ′′(Xc)|
. (2.53)

The result basically says that the partition function is the sum of the signs of h ′′(X) at the critical
points of h(X). If the leading order of h is odd, then Z = 0 because there are as many critical points
with positive h ′′ as with negative. If the leading order is even, then Z = ±1 depending on whether
the leading term is positive or negative.

2.3 Deformation Invariance

Nowwe know that the partition function is largely independent of the details of the superpotential
h(X). In fact, the partition function is invariant under (almost) any change in the superpotential,
which is called deformation invariance.

To prove this, we first need to make the following observation. If we have a QFT with a
symmetry, then the correlation functions of quantities that are variations of some fields under the
symmetry vanish. Schematically, if the variation of action δS = 0 and the jacobian J = 1 for some
transformation δ, then

〈f〉 =
∫
fe−S =

∫
δge−S =

∫
δ(ge−S) = 0 , (2.54)

where f and g are some fields. The validity of this statement depends on the asymptotic behaviour
of g. It holds as long as g is not too big at infinity in the field space.

Now consider the change h(X) 7→ h(X) + ρ(X), the variation of the action is given by

δρS = h ′ρ ′ − ρ ′′ψ1ψ2 . (2.55)

This can be written (up to a factor of ε) as the supersymmetry transformation of the field g =

ρ ′(X)ψ1 with parameters ε1 = ε2 = ε. Hence we can immediately conclude that the correlation
function 〈δρS〉 vanishes using the above argument. This implies that the partition function is
invariant under the change in the superpotential h(X) since

δρZ = −

∫
δρSe

−S = −〈δρS〉 . (2.56)

This statement holds as long as the change ρ(X) is asymptotically smaller than the superpotential
h(X) at infinity in the field space.
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3 Conclusion

This brief review shows the basic constructions of a QFT in the path integral formalism. The
study of supersymmetry on this simplest model clearly reveals some of the fundamental features
of supersymmetric theories. In particular, the discussion of localisation principle and deformation
invariance of the superpotential iswidely applicable to higher dimensional cases. These techniques
should form part of the backbone for the future research in higher dimensional supersymmetric
quantum field theories.
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