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Abstract

Music is the art of manipulating sound, which is ubiquitous across human society.
In particular, harmony is one of the key phenomena of music. However, current music
theory seems to lack the power to explain it. This article intends to explain the
mysterious harmony by deriving the basic building block of western music, the Major
Scale, via first principles of physics. Along with a few postulates about how the brain
“computes” music, a possible explanation for the difference of the emotional quality
between different Diatonic Scales and Chords is discussed. This scientific approach to
explain music provides an insight into a unified theory of music based on solid science.
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Introduction

Music is capable of delivering emotions,
but the reason behind this association be-
tween a sound and its emotional quality
remains a mystery. Music theory books
simply describe the empirical rules coined
by generations of musicians as a guideline
to which note or note combinations sound
“right”. However, the frustrating fact is
that none of them really explains why these
rules work. [1] As a physicist, I would prefer
a scientific theory of music with explana-
tory power rather than a descriptive for-
mula sheet.

While music is a miracle of human creativ-
ity, sound is strictly governed by laws of
physics. In essence, music is the combina-
tions and arrangements of sound. There-
fore it is reasonable to ask for a scientific
explanation of music.

In pursuit of a unified scientific theory of
music, we will build up the foundation in
this article in three steps. We will start
with the first principles of physics about the
nature of sound in section one. Then five
postulates about the mechanism of sound
perception will be discussed in section two.
In section three, we will derive the Major
Scale from harmonic series, whereby the
Chromatic Scale could be assembled. A
brief explanation of the reason behind the
emotional quality difference between differ-
ent Diatonic Scales1 and Chords2 is dis-
cussed in the end.

1Diatonic Scale is a Scale composed of seven
pithes including five whole-steps and two half-steps
in each octave, in which the two half-steps are sep-
arated by either two or three whole-steps. [2]

2Chord is a collection of three or more harmon-
ically related notes. [3]

1 Physics of Sound

1.1 Sound Waves

Sound is a propagating wave triggered by
vibrations. The behaviours of these waves
are encapsulated in the wave equation,

∂2ψ

∂t2
= c2

∂2ψ

∂x2
, ψ = ψ(x, t), (1)

where ψ is displacement, c is speed of prop-
agation, x and t are space and time. [4] It is
essentially an application of Newton’s Sec-
ond Law, F = ma, to a string.

Figure 1: Harmonic Wave and Waveforms
of Real Instruments. [5]

Sound wave can be of any form as long as
it satisfies the wave equation, e.g., all the
waveforms shown in Fig. 1 are valid solu-
tions.

1.2 Fourier Transform

The wave equation is a linear differential
equation as the highest power of ψ is one.
Hence, any linear combination, i.e., sum of
its solutions is also a valid solution. Con-
versely, a complicated waveform can be de-
composed into a sum of individual har-
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monic, i.e., sinusoidal waves, each of dif-
ferent frequencies and amplitudes. [6]

Figure 2: Schematic Diagram of Fourier
Transform. [7]

Fourier transform is the algorithm to ex-
press an arbitrary waveform as a series sum
of harmonic waves.3 Human auditory sys-
tem virtually implements a Fourier anal-
yser in the cochlea. [8] So the pitches we
hear are the frequencies of the individual
harmonic components.

1.3 Harmony in Nature

A harmonic series is defined differently in
mathematics and music theory, although
they share the same origin. In mathemat-
ics, a harmonic series refers to an infinite
sum,

∞∑
n=1

1

n
, n = 1, 2, 3 . . . , (2)

which is derived from the wavelengths of
the vibrating modes of a string, shown in
Fig. 3. [9] The mode with longest wave-
length is called the fundamental. For a

3For a non-periodic wave, the sum becomes an
integral of harmonic waves over all frequencies. [10]

string with both ends fixed, its displace-
ment must be zero at both ends. This is a
boundary condition which implies that the
string can only vibrate at wavelengths that
are 1, 1

2 , 1
3 , . . . of the fundamental wave-

length. A real waveform is a mixture of all
the harmonics of different wavelengths with
different amplitudes.

Figure 3: Harmonic Series On String. [11]

Frequency is proportional to the recipro-
cal of wavelength; hence frequencies of the
harmonics are integral multiples of the fun-
damental frequency,

fn = nf1, n = 1, 2, 3 . . . , (3)

where fn is the frequency of the nth har-
monic and f1 is the frequency of the 1st

harmonic, i.e., the fundamental. This se-
quence of frequencies is the harmonic se-
ries defined in music theory, which is the
definition we will use in this article. [12]

The harmonic series does not only apply
to strings, it is omnipresent in nature. In
fact, the harmonic series can be regarded as
an abstraction of the sound of nature. For
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example, the relation is exactly the same
for a column of air with both ends open or
both closed. For an air column with one
end open and the other closed, it only has
odd harmonics, i.e., n = 1, 3, 5 . . . due to
its asymmetric boundary conditions. [13]

1.4 Timbre of Instruments

Figure 4: Overtone Profiles of Flute and
Violin. [14]

In reality, when a note is played on an
instrument, frequencies higher than the
fundamental are produced simultaneously,
which are called overtones. [12]

However, an overtone series does not nec-
essarily resemble a harmonic series exactly,
e.g., the overtones of piano strings have
higher frequencies than the harmonic se-
ries they approximate. [15] It is the over-
tone profile that differentiates one instru-
ment from another and yields the timbre of
an instrument. For example, clarinets are
characterised by higher energy in odd har-
monics while trumpets have relatively even

amounts of energy in both odd and even
harmonics. [16]

2 Machinery of the Brain

2.1 Harmonic Detector

The brain is a machine optimised by evolu-
tion. As the harmonic series is a universal
phenomenon in nature, in order to effec-
tively recognise it, the auditory system is
likely to be equipped with a harmonic se-
ries detector.

Postulate 1 The brain has a hard-wired
harmonic detector.4

2.2 Nature is Sweet

Virtual pitch is a well-known acoustic phe-
nomenon. If the fundamental of a harmonic
series is removed, people will still hear
the entire harmonic series including the
fundamental. [17] This phenomenon does
not only advocate postulate one, but also
suggest that the brain is actively search-
ing for harmonic series, possibly by re-
constructing the fundamental as the great-
est common divisor of higher harmonics.
It indicates that the brain might enjoy the
sound of harmonic series.

Postulate 2 The harmonic series sounds
sweet to the brain.

I think many people would agree that the
sound of a violin is generally sweeter than a
brass instrument. In fact, the overtones of
a violin approximate a harmonic series very
accurately, in comparison, the approxima-
tion of a brass is much poorer. [1]

4All five postulates in this section are inspired
by Wilkerson (2014). [1]
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2.3 Optimisation of Algorithm

The computational power of the brain is
very constrained compared to modern com-
puters. To conserve the precious comput-
ing power, the algorithm executed by the
brain must have been optimised by evolu-
tion.

People perceive frequencies whose ratios
are integer powers of 2, e.g., 220Hz, 440Hz
and 880Hz, as sounding very similar. [18]
In fact, they are all called musical note A
but one Octave apart. This suggests that
the brain might be normalising the input
harmonic tone from the cochlea by dou-
bling or halving its frequency, until it is
within a specific frequency range spanned
by a factor of 2, e.g., 220–440Hz, which is
one Octave. The brain could save comput-
ing resources consumed for recognising the
absolute pitch.

Postulate 3 The brain normalises the in-
put harmonic tone by doubling or
halving its frequency until it is within
one Octave.

Furthermore, people could recognise a tune
no matter how high or low the first note is.
As long as the frequency ratios of consec-
utive notes are the same, people perceive
them as the same melody, which is known
as the phenomenon of relative pitch. [19] It
is an indication that the brain might recog-
nise musical intervals via the frequency ra-
tios of the input tones.

Postulate 4 The brain computes the fre-
quency ratios of the tones and regards
the same ratio as the same musical in-
terval.

For example, we hear three consecutive
notes C4, G4 and D5, which are about

262Hz, 392Hz and 587Hz respectively.
First, the brain normalises D5 by halving
its frequency to D4 ≈ 293Hz to recognise it
as a D note. Then the frequency ratios are
calculated and the brain notices that

392Hz

262Hz
≈ 3

2
≈ 587Hz

392Hz
, (4)

so the interval between C4 and G4 is
deemed as the same as the interval between
G4 and D5, in which case both are the Per-
fect Fifth.

2.4 Disambiguation Engine

The real world has a lot of ambiguities
that can be understood in multiple ways.
The brain implements a disambiguation en-
gine that tries resolve these ambiguities via
personal experience and knowledge. [1] For
example, a joke often consists of a pre-
ceding story introducing some ambiguity
and a punchline resolving the ambiguity in
the opposite way to common understand-
ing. [20] People enjoy jokes as the disam-
biguation engine of the brain is teased by
surprise.

Postulate 5 The brain enjoys its disam-
biguation engine being teased.

3 Harmony of Music

3.1 The Major Triad

As the brain enjoys the sound of harmonic
series, we shall examine what musical notes
harmonic series generate.

Shown in Fig. 5 is the harmonic series with
Middle C5 as the fundamental. The fre-
quency ratio of a harmonic relative to the

5Middle C is C4 in scientific music notation, cor-
responding to 261.6Hz.
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Figure 5: Harmonic Series of Middle C.

fundamental is simply just its order, n. By
executing normalisation to render all ratios
between 1 and 2, i.e., within one Octave, C
Major Triad6 spontaneously arises from the
harmonic series, in which the musical inter-
vals corresponding to 5

4 and 3
2 are the Major

Third and Perfect Fifth respectively. [21]

Figure 6: Three Harmonic Series Present
in the Major Triad.

When the three notes of a Major Triad are
played together, there are three harmonic
series present at the same time. The fre-
quency ratios relative to the fundamental
of the Root are shown in Fig. 6.

By inspecting each column of the table, the
structure of intervals is found to be pre-
served for each order of the harmonics. For
instance, the frequency ratio of the 3rd har-
monic of the Perfect Fifth relative to the
3rd harmonic of the Root is still 3

2 , a Per-
fect Fifth. This argument is in fact valid
for any chord.

6The Major Triad is a chord built on the Root,
the Major Third and the Perfect Fifth intervals.

In this particular case, the Major Triad ef-
fectively produces a “matrix” of harmonic
series, represented both vertically and hor-
izontally in the table. Each column and
each row forms a harmonic series itself. Ac-
cording to postulate two, the Major Triad
should sound even sweeter than the already
sweet harmonic series.

3.2 The Major Scale

The Major Scale is the basic building block
of western music and all the other Diatonic
Scales can be deemed as the Major Scale
starting from different positions.7 [22] As
the Major Fifth is the first musical interval
produced by harmonic series, we will start
with three notes one Perfect Fifth apart.
The Major Scale can then be constructed
via three interlocking Major Triads based
on these three notes. [1]

To construct the Major Scale, we take an
arbitrary note as the Root of the Scale. All
intervals in the Scale are calculated relative
to the Root, which means all frequency ra-
tios are computed relative to that arbitrary
note as shown in Fig. 7. In the first row of
the diagram, the ratio of the Root with it-
self, 1, is multiplied by 3

2 to get the the note
a Perfect Fifth higher and divided by 3

2 to
get the note a Perfect Fifth lower. Then
three Major Triads are constructed using
the three notes obtained in the 1st row as
the Roots of the Triads. Finally the fre-
quency ratios are normalised to be between
1 and 2 and re-ordered ascendingly to get
the Major Scale.

In musical notation, intervals are expressed
as additive distances between two notes.

7All Diatonic Scales can be divided into seven
Modes, equivalent to the Major Scale starting from
its seven different notes. [23]
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Figure 7: The Major Scale Built on Three Interlocking Triads.

However, the intervals perceived by the
brain are based on multiplicative ratios. [1]
To turn multiplicative factors into additive
increments, the only method is logarithm.
In Fig. 8, the frequency ratios are plotted
against their logarithm with respect to base
2.

Figure 8: Intervals of Major Scale on Log-
arithm Space.

Now some old familiar patterns are formed
on the log2R axis. Specifically, the separa-
tions between consecutive notes are roughly
2
12 ,

2
12 ,

1
12 ,

2
12 ,

2
12 ,

2
12 ,

1
12 . If the intervals be-

tween 2 adjacent white keys on a piano are

Figure 9: Two Octaves on Piano Keyboard.

written in half-steps, as shown in Fig. 9, the
above two patterns precisely resemble each
other. Indeed, the white keys on a piano
are the notes of C Major Scale.

3.3 The Chromatic Scale

The black keys on a piano are placed in-
between the consecutive white keys with
wider intervals, i.e., those separated by 2

12
on log2R axis. There are a total of twelve
keys on a piano within one Octave cor-
responding to the Chromatic Scale, upon
which all western music is written.

The Chromatic Scale can be constructed by
combining the Major Scale with its inver-
sion. If all the intervals are calculated rel-
ative the last note in the Major Scale, i.e.,
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Figure 10: Construction of Chromatic Scale via Locrian Mode.

the Major Seventh, a Scale called Locrian
Mode is generated. Shown in Fig. 10, the
notes in the Major Scale are re-ordered and
then normalised with respect to the Ma-
jor Seventh, 15

8 , resulting in the Locrian
Mode. There appear five new intervals cir-
cled in the diagram. Finally the Chromatic
Scale is built by collecting all the intervals
present in the two Scales.8

3.4 Emotional Quality

The Major Scale presents a bright and
happy feeling as it pleases the brain with
three interlocking Major Triads built on
harmonic series. It is the Scale that the
brain expect to hear naturally. However,
if the starting note is changed, the pair-
wise intervals will remain the same but ap-
pear in different positions in other Diatonic
Scales.

8There are different ways to construct the Chro-
matic Scale with just intonation, which lead to sim-
ilar ratios. This method is my original work.

For example, the Natural Minor Scale, or
Aeolian Mode, is built by the same method
as we build the Locrian Mode but now the
6th note of the Major Scale is used as the
Root. The brain could recognise the Natu-
ral Minor as a scale built on harmonic se-
ries, but the order of intervals is “wrong”.

According to postulate five, the deviation
from the expected “right” order teases the
disambiguation engine of the brain, which
might be the reason behind the quality dif-
ference between different Diatonic Scales.
The Minor Scale sounds a bit “off” or dis-
sonant, but still interesting to the brain.
In fact, there exist several Minor Scales in-
cluding the Natural Minor, Harmonic Mi-
nor and Melodic Minor. It might be due
to the fact that while there is only one way
to be right, there can be many ways to be
wrong. [1]

A Chord is constructed with three or more
notes from the Chromatic Scale, which can
be thought as a miniature Scale. Similar
to the argument for Diatonic Scales, the
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Figure 11: Just Intonation vs. Equal Temperament.

combination and ordering of different inter-
vals in a Chord might be the source of its
quality. For example, the C Major Seventh
chord is C-E-G-B containing two Triads. [1]
C-E-G constitute C Major Triad in which
the intervals are in the “right” order, while
E-G-B forms E Minor Triad in which, the
intervals are ordered “incorrectly”.

3.5 Just and Equal Tunning

In the above argument, an instrument is
assumed to be tuned according to just in-
tonation, which means the intervals are ad-
justed to the exact ratios in the Chromatic
Scale shown in Fig. 10. But this tuning
method has a severe problem in applica-
tion. Assuming an instrument is tuned us-
ing C as the Root, the harmony will be per-
fect for a piece in Key of C. However, the
harmony will break down when a piece in
other Keys is played.9 For example, the
“Perfect” Fifth in D Major Scale will cor-
respond to the interval between the 6th and
2nd note in C Major Scale, corresponding to
5
3 ÷

9
8 ≈ 1.48, which has a noticeable devia-

tion from the “perfect” ratio, 3
2 . This prob-

lem becomes more prominent with Keys
further away from the Key according to
which the instrument is tuned as the de-
viations are accumulative.

To mitigate the problem of just intonation,
equal temperament is often used as a com-

9The Key of a piece is the tonic note, which is
usually the Root of the scale used.

promise between the technical limitations
and pursuit of harmony. All the inter-
vals between consecutive notes in the Chro-
matic Scale are tuned equally to 21/12 ≈
1.059. As a result, it makes none of the
Keys sound perfect, but it allows every Key
sound acceptable. [24] A comparison be-
tween frequency ratios in equal tempera-
ment and the just intonation derived in this
article is shown in Fig. 11.

4 Summary

In pursuit of a scientific music theory, we
started from the first principles of physics
and derived the Major Triad from the ab-
straction of natural sound, harmonic series.
Then the Major Scale was constructed via
three interlocking Major Triads. Subse-
quently, Locrian Mode was constructed by
re-ordering the Major Scale and the Chro-
matic Scale was assembled using the inter-
vals present in both the Major Scale and
Locrian Mode. Finally, a possible expla-
nation of the emotional quality of Diatonic
Scales and Chords is discussed.

Although this theory of music is far from
complete, at least it provides some insight
into the viability of a scientific approach
towards a unified music theory.
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